
Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Concurrent Programming - Tasks

Paweł Paduch

Politechnika Świętokrzyska

14 stycznia 2021

Paweł Paduch Concurrent Programming - Tasks 1 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Plan of the lecture

1 Introduction
Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

2 TAP
Naming and Return Types
Initializing
Exceptions
Execution

3 TAP
Statuses
Cancelation
Progress
Progress - Implementation

4 Examples
Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Paweł Paduch Concurrent Programming - Tasks 2 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Bibliography

Paterny programowania asynchronicznego -
https://docs.microsoft.com/dotnet/standard/asynchronous-
programming-patterns/?view=netframework-4.7.2

TAP -
https://docs.microsoft.com/dotnet/standard/asynchronous-
programming-patterns/task-based-asynchronous-pattern-
tap?view=netframework-4.7.2

Paweł Paduch Concurrent Programming - Tasks 3 z 83

https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/?view=netframework-4.7.2
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/?view=netframework-4.7.2
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2
https://docs.microsoft.com/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Task

The Task class represents a single operation that does not
return a value and usually executes asynchronously.

For an operation that returns a value, use the class
Task<TResult>

Task is the central class that represents TAP (Task-based
Asynchronous Pattern)

Tasks usually execute on the thread pool asynchronously, so
you can use Status properties such as IsCanceled, IsCompleted
or IsFaulted

To define the task to be performed by task, the Lambda
notation is usually used

Paweł Paduch Concurrent Programming - Tasks 4 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Asynchronous Programming Model (APM)

Asynchronous Programming Model (APM) pattern, also called
AsyncResult pattern

It is an older model uses an interface to a IAsyncResult
asynchronous behavior

Synchronous operations require Begin and End methods, such
as BeginWrite and EndWrite, to implement asynchronous
operations.

Is no longer recommended for a new application designs.

Paweł Paduch Concurrent Programming - Tasks 5 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Event-based Asynchronous Pattern (EAP)

Event-based Asynchronous Pattern (EAP)

was introduced to the .Net 2.0 framework

event-based model

provides asynchronous behavior
requires:

methods with the Async suffix
one or more events (event)
delegates
event handlers
Types derived from EventArg

currently is not a recommended pattern

Paweł Paduch Concurrent Programming - Tasks 6 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Task-based Asynchronous Pattern (TAP)

Task-based Asynchronous Pattern (TAP)

Introduced in .net framework 4

Based on Task and Task <TResult> in the
System.Threading.Tasks namespace

Uses a single method to represent the initiation and
completion of an asynchronous operation

Recommended as a pattern for asynchronous operations

in C# two new keywords async and await

Paweł Paduch Concurrent Programming - Tasks 7 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Comparison APM

For comparison, consider an asynchronous method that reads a
certain amount of data from a certain offset to a given buffer.
In the case of APM, two methods would be issued

Listing 1: APM example
1 public class MyClass
2 {
3 public IAsyncResult BeginRead(
4 byte [] buffer, int offset, int count,
5 AsyncCallback callback, object state);
6 public int EndRead(IAsyncResult asyncResult);
7 }

Paweł Paduch Concurrent Programming - Tasks 8 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Comparison EAP

EAP would have to issue the following set of types and variables

Listing 2: EAP example
1 public class MyClass
2 {
3 public void ReadAsync(byte [] buffer, int offset, int count);
4 public event ReadCompletedEventHandler ReadCompleted;
5 }

Paweł Paduch Concurrent Programming - Tasks 9 z 83

Introduction
TAP
TAP

Examples

Plan
Bibliography
Basic concepts
Patterns of asynchronous programming
Comparison

Comparison TAP

In the case of TAP suffice one method:

Listing 3: TAP example
1 public class MyClass
2 {
3 public int Read(byte [] buffer, int offset, int count);
4 }

Paweł Paduch Concurrent Programming - Tasks 10 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Naming and types

Asynchronous methods in TAP contain the suffix Async after the
operation name and return types of type await (awaitable) such as:

Task,

Task<TResult>,

ValueTask,

ValueTask<TResult>

For example, an asynchronous Get method that returns
Task<string> can be named GetAsync

Paweł Paduch Concurrent Programming - Tasks 11 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Naming and types

If we add asynchronous TAP methods to a class that already
contains EAP methods with the Async suffix, we should use
the TaskAsync suffix

If an asynchronous method starts an operation but does not
return the above types awaitable, its name should start with
Begin or Start or some other name suggesting that it will not
return awaitable

The TAP method returns either System.Threading.Tasks.Task
or System.Threading.Tasks.Task<TResult> depending on
whether the corresponding synchronous method returns void
or type TResult.

Paweł Paduch Concurrent Programming - Tasks 12 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Parameters

The parameters of the TAP method should match those of its
synchronous counterpart and should be provided in the same
order.

The out and ref parameters are excluded from this rule and
should not be used.

Data returned by out or ref should be returned as part of the
TResult returned by Task<TResult>

When returning multiple values, we should use a collection or
a more elaborate structure.

Consider adding the CancellationToken parameter, even if the
synchronous counterpart of the TAP method does not offer
such a parameter.

Paweł Paduch Concurrent Programming - Tasks 13 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Exceptions in the naming

Methods that are purely for creating, manipulating, or combining
tasks (where asynchronous intentions of a method are clear in the
name of the method or in the name of the type to which the
method belongs), do not need to follow this naming pattern; Such
methods are often called combinators. For example WaitAll,
WaitAny

Paweł Paduch Concurrent Programming - Tasks 14 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Initiating an asynchronous operation

The TAP-based asynchronous method can perform a small part of
the task synchronously, for example, check arguments and initiate
an asynchronous operation before returning the resulting task.
However, the synchronous part should be kept to a minimum for
two reasons.

if an async method is called from a UI (UI) thread, this can
freeze it.

when we want to start multiple asynchronous methods then
each synchronous part delays the invocation of the next
method.

In some cases, the initiation time of an asynchronous operation
may exceed the operation itself performed synchronously, then we
should not use async.

Paweł Paduch Concurrent Programming - Tasks 15 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Exceptions in the async method

The async method should throw an exception only in response
to a usage error.

For all other errors, exceptions that occur when an
asynchronous method is running should be assigned to the
returned task, even if the asynchronous method happens to
complete synchronously before the task is returned.

Typically, a task contains at most one exception. However, if
the task represents multiple operations (for example,
WhenAll)), multiple exceptions may be associated with a
single task.

Paweł Paduch Concurrent Programming - Tasks 16 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Target environment

After implementing the TAP method, you can determine where the
asynchronous execution occurs.

execution on a thread pool

using asynchronous I / O (without binding to a thread for
most of the operation).

run on a specific thread (e.g. UI thread).

or use any number of potential contexts

The TAP method doesn’t even have to do anything, it just
needs to return the task representing the occurrence of some
condition elsewhere in the system. For example, with the
information that there is data in the queue.

Paweł Paduch Concurrent Programming - Tasks 17 z 83

Introduction
TAP
TAP

Examples

Naming and Return Types
Initializing
Exceptions
Execution

Calling program

The program calling the asynchronous method can either
block while waiting for the resulting task, or call additional
continuation code after the asynchronous operation completes.

The author of the continuation code decides where this code
is to be executed. It can be created explicitly using methods
of the Task class, eg ContinueWith or implicitly, eg await.

Paweł Paduch Concurrent Programming - Tasks 18 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Statuses

Created
0

WaitingForActivation
1

WaitingToRun
2

Running
3

WaitingForChildrenToComplete
4

RanToCompletion
5

Canceled
6

Faulted
7

Paweł Paduch Concurrent Programming - Tasks 19 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Created

This is a so-called ’cold’ task, without activation.

Task status right after creation by constructor Task

Transition to another state only by calling Start or
RunSynchronously on the task instance.

If the TAP method internally creates a task using the Task
constructor, it must activate it before returning its instance.

Consumers of the TAP method can assume that the returned
job is active and should no longer call Start to activate it, as
this will result in an InvalidOperationException exception.

Paweł Paduch Concurrent Programming - Tasks 20 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

WaitingForActivation

The status of the task right after it was created by methods
such as ContinueWith, ContinueWhenAll, ContinueWhenAny
and FromAsync

The task is not scheduled yet and will not be until the tasks
they are waiting for are finished.

The job will be activated and scheduled internally by the
.NET infrastructure

Paweł Paduch Concurrent Programming - Tasks 21 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

WaitingToRun

A job that is scheduled and waiting to run

Initial state for tasks created by TaskFactory.StartNew. At
least until it returns from the StartNew function. But it may
happen that they immediately return with the status Running
or even RanToCompletion

Paweł Paduch Concurrent Programming - Tasks 22 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Running

Task in progress

Paweł Paduch Concurrent Programming - Tasks 23 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

WaitingForChildrenToComplete

The task has completed but is waiting for child tasks to
complete

Paweł Paduch Concurrent Programming - Tasks 24 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

RanToCompletion

One of the 3 final states.

The task successfully finished, without exceptions or
cancelation.

Paweł Paduch Concurrent Programming - Tasks 25 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Canceled

One of the 3 final states.

The task in this state is ended with Cancel

Paweł Paduch Concurrent Programming - Tasks 26 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Faulted

One of the 3 final states.

The task enters this state when it completes an unhandled
exception

or one of the child tasks ends with a Faulted state.

Paweł Paduch Concurrent Programming - Tasks 27 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Cancelation

In TAP, cancellation is optional for both the implementation
of async methods and their consumers.

If the operation allows cancellation, it issues the overloaded
asynchronous method that accepts the CancellationToken
instance.

With standard nomenclature, this parameter is called
cancellationToken.

Listing 4: example
1 public Task ReadAsync(byte [] buffer, int offset, int count,
2 CancellationToken cancellationToken)

Paweł Paduch Concurrent Programming - Tasks 28 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Cancelation

The asynchronous operation checks the cancellation token
and can honor it and cancel the operations.

If this causes an early exit, the TAP method returns the job
that ends in the Canceled state.

There is no result available and no exception is thrown.

The Canceled state is considered final. (completed)
IsCompleted = true, including the states Faulted and
RanToCompletion.

When a task is canceled in the Canceled state, any
continuations registered in the task are scheduled or executed
unless the NotOnCanceled continuation option has been
specified to cancel it.

Paweł Paduch Concurrent Programming - Tasks 29 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Cancelation

Any code asynchronously waiting for a canceled task through
functions continues to run, but receives the
OperationCanceledException exception or its derivatives.

Synchronously blocked code waiting for a task using methods
such as Wait and WaitAll also still works with exception.

If a cancellation token requested cancellation before calling a
TAP method that accepts the token, it should return the
canceled task.

However, if cancellation is required during an asynchronous
activity, the asynchronous operation does not need to accept
the cancellation request.

Paweł Paduch Concurrent Programming - Tasks 30 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Cancelation

How to clearly define what is cancellable and what is not?

For async methods that want to issue a cancellation, it’s best
not to issue an overload without a cancellation token.

The caller of this method, who does not want to cancel it, will
have the option to specify None instead of the token.

However, when we want to prevent cancellation, we do not
create an overload that accepts a cancellation token.

This helps to indicate to the caller whether the target method
is actually cancellable.

Paweł Paduch Concurrent Programming - Tasks 31 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Cancelation

Returned task should be completed in the state Canceled only
when the operation will result in the cancellation request.

If cancellation is requested but the result or exception is still
thrown, the task should end in the status RanToCompletion or
Faulted.

Paweł Paduch Concurrent Programming - Tasks 32 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress

Some asynchronous operations use delivering progress
notifications; they are typically used to update the user interface
with information about the progress of the asynchronous operation
Provide a progress interface when an async method is called.
As with cancellation, TAP implementations should provide the
IProgress<T> parameter only if the API supports progress
notifications.

Paweł Paduch Concurrent Programming - Tasks 33 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress

The progress interface supports various progress implementations,
determined by the code using it. For example:

the using (consumer) code can only take care of the latest
updates or cache all items.

you can attach an action that handles the event of each
update

you can control whether the call is directed to a specific
thread.

All these options can be achieved by using a different
implementation of the interface, customized to the specific needs
of the consumer.

Paweł Paduch Concurrent Programming - Tasks 34 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress - example

If the ReadAsync method would be able to report indirect progress
as the number of bytes read, the callback may be an interface
IProgress<T>:

Listing 5: example
1 public Task ReadAsync(byte[] buffer, int offset, int count,
2 IProgress<long> progress)

Paweł Paduch Concurrent Programming - Tasks 35 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress - example

If the FindFilesAsync method returns a list of all files that match
the specified search pattern, a progress callback can provide an
estimate of the percentage of work completed as well as the
current set of partial scores. It can do this either with a tuple...:

Listing 6: example
1 public Task<ReadOnlyCollection<FileInfo>> FindFilesAsync(
2 string pattern,
3 IProgress<Tuple<double,
4 ReadOnlyCollection<List<FileInfo>>>> progress)
5

Paweł Paduch Concurrent Programming - Tasks 36 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress - example

...or an API-specific data type:

Listing 7: example
1 public Task<ReadOnlyCollection<FileInfo>> FindFilesAsync(
2 string pattern,
3 IProgress<FindFilesProgressInfo> progress)
4

In the latter case, the special data type is usually supplemented
with ProgressInfo.

Paweł Paduch Concurrent Programming - Tasks 37 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress

If the TAP implementations provide overloads, which accept the
progress parameter is they must allow the progress argument to be
NULL, In this case, the consumer of the method is not interested
in reporting progress and we should not report it. You have to
check in the handling methods if progress! = NULL

Paweł Paduch Concurrent Programming - Tasks 38 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress

TAP implementations should report progress to the Progress<T>
object synchronously, which will enable the asynchronous method
to quickly provide data on progress and allow consumers to
determine how and where to best handle the obtained information
on progress. For example, a progress instance might choose to
make callbacks. For example, handle the reporting event.

Paweł Paduch Concurrent Programming - Tasks 39 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress - Implementation

The .NET Framework 4.5 provides a single implementation of
IProgress<T>: Progress<T>. The Progress<T> class is declared
as follows:

Listing 8: example
1 public class Progress<T> : IProgress<T>
2 {
3 public Progress();
4 public Progress(Action<T> handler);
5 protected virtual void OnReport(T value);
6 public event EventHandler<T> ProgressChanged;
7 }
8

Paweł Paduch Concurrent Programming - Tasks 40 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Progress

The Progress<T> instance provides a ProgressChanged event
that is called whenever an asynchronous operation reports a
progress update.

The ProgressChanged event is called on the
SynchronizationContext object that was captured when the
Progress<T> instance was created.

If no synchronization context was available, the default
context is used and points to the thread pool.

You can attach handlers to this event. For convenience, one of
them can be specified in the Progress<T> constructor

Progress updates are triggered asynchronously to avoid delays.

Paweł Paduch Concurrent Programming - Tasks 41 z 83

Introduction
TAP
TAP

Examples

Statuses
Cancelation
Progress
Progress - Implementation

Overloads

If your TAP implementation uses the optional CancellationToken
parameters and the optional IProgress<T>, it can potentially
require up to four overloads:

Listing 9: example
1 public Task MethodNameAsync(...);
2 public Task MethodNameAsync(..., CancellationToken cancellationToken);
3 public Task MethodNameAsync(..., IProgress<T> progress);
4 public Task MethodNameAsync(...,
5 CancellationToken cancellationToken, IProgress<T> progress);
6

However, many implementations do not support CancellationToken
and IProgress<T> and the first version will suffice.

Paweł Paduch Concurrent Programming - Tasks 42 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Start

We create an instance of the Task class and then start the task.
The action is described by the lambda expression.

Listing 10: example of new Task
1 var task = new Task(() =>
2 {
3 Console.WriteLine("First task is working...");
4 Thread.Sleep(1000);
5 Console.WriteLine("First task finished");
6 });
7 task.Start();
8 task.Wait();
9

After the Start method is called, the main thread goes on, to wait
for the task to finish, call Wait()

Paweł Paduch Concurrent Programming - Tasks 43 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Run

We use the static Run method. It creates Task running, so you
don’t need to call Start ()

Listing 11: example of Task.Run
1 task = Task.Run(() => {
2 Console.WriteLine("Task Run is working");
3 Thread.Sleep(1000);
4 Console.WriteLine("Task Run finished");
5 });
6 task.Wait();
7

Paweł Paduch Concurrent Programming - Tasks 44 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Factory

We use a factory and the static method StartNew. It creates a
running Task, so you don’t need to call Start()

Listing 12: example of Task.Factory.Run
1 task = Task.Factory.StartNew(() => {
2 Console.WriteLine("Task from Factory is working");
3 Thread.Sleep(1000);
4 Console.WriteLine("Task from Factory finished");
5 });
6 task.Wait();
7

Paweł Paduch Concurrent Programming - Tasks 45 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Many tasks

We create multiple tasks that perform the same action. CurrentId
is assigned when it is referenced, not at startup.

Listing 13: example of Mutli Task start
1 Action a = () =>
2 {
3 Console.WriteLine($"Task no {Task.CurrentId} has started");
4 Thread.SpinWait(new Random().Next(300000000));
5 Console.WriteLine($"Task no {Task.CurrentId} finished");
6 };
7 List<Task> listOfTasks = new List<Task>();
8 for (int i = 0; i < 10; i++)
9 {
10 listOfTasks.Add(new Task(a));
11 }
12 listOfTasks.ForEach(t => t.Start());
13 listOfTasks.ForEach(t => t.Wait());
14

Paweł Paduch Concurrent Programming - Tasks 46 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Parameter passing

Passing information to the task

Listing 14: Example of passing parameter
1 Task printSthTask = new Task((o) =>
2 {
3 for (int i = 0; i < 5; i++)
4 {
5 Thread.Sleep(200);
6 Console.WriteLine((string)o + " " + i);
7 }
8 }, "Bla ble blu...");
9 printSthTask.Start();
10 printSthTask.Wait();

Paweł Paduch Concurrent Programming - Tasks 47 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Returning values

Returning value from the task

Listing 15: Example of returning value
1 Task<int> intTask = Task.Run(() =>
2 {
3 Thread.Sleep(1000);
4 return 5;
5 });
6 Console.WriteLine("Waiting for value from task");
7 var result = intTask.Result;
8 Console.WriteLine($"We received value: {result}");
9

On line 7. We wait for the task to end, only then can we read the
result

Paweł Paduch Concurrent Programming - Tasks 48 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Casual work

Usual synchronous method making processor a little bit busy.

Listing 16: An example of a synchronous method
1 public void OrdinaryWork(int howMuch)
2 {
3 Console.WriteLine($"Worker {Name} start ordinary work....");
4 for (int i = 1; i <= howMuch; i++)
5 {
6 Thread.SpinWait(100000000);
7 Console.WriteLine($"Worker {Name} has elaborated {i} items");
8 }
9 Console.WriteLine($"Worker {Name} finished ordinary work.");
10 }

Listing 17: An example of calling a method
1 Worker worker1 = new Worker("Mietek");
2 Console.WriteLine("We are delegating a synchronous task to worker");
3 worker1.OrdinaryWork(10);
4 Console.WriteLine("The synchronous task was delegated and done");

Paweł Paduch Concurrent Programming - Tasks 49 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task without controll

This method will create a task, but it will be like “run and forget”.

Listing 18: An example of a method creating a task
1 public void WorkTask(int howMuch)
2 { Console.WriteLine($"Worker {Name} start task working....");
3 Task t = new Task(() =>
4 { for (int i = 1; i <= howMuch; i++)
5 { Thread.SpinWait(100000000);
6 Console.WriteLine($"Worker {Name} has elaborated {i} items");
7 }
8 Console.WriteLine($"Worker {Name} finished task work");
9 });
10 t.Start(); }

Listing 19: An example of calling a method
1 Worker worker2 = new Worker("Zenon");
2 Console.WriteLine("We order to the employee work and he creates a Task");
3 worker2.WorkTask(10);
4 Console.WriteLine("Work for Zenon was commissioned and he began to perform. ←↩

Unfortunately, here our supervision ends");

Paweł Paduch Concurrent Programming - Tasks 50 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

The task we know about

The method that returns the task, according to the TAP policy,
the returned task must already be running. This is an
asynchronous method, so it might be called xxxAsync.

Listing 20: An example of a method that creates and returns a task
1 public Task WorkAsync(int howMuch)
2 {
3 Console.WriteLine($"Worker {Name} begin async work....");
4 Task t = new Task(() =>
5 {
6 for (int i = 1; i <= howMuch; i++)
7 {
8 Thread.SpinWait(100000000);
9 Console.WriteLine($"Worker {Name} has elaborated {i} items");
10 }
11 Console.WriteLine($"Worker {Name} finished async work");
12 });
13 t.Start(); //according to the TAP model, the task returned by the asynchronous

method should be started
14 return t;
15 }

Paweł Paduch Concurrent Programming - Tasks 51 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

The task we know about

A call to a method that returns a task. Since it is awaitable, you
can wait for it to finish.
Listing 21: An example of calling a method that creates and returns a
task

1 Worker worker3 = new Worker("Janusz");
2 Console.WriteLine("We order to the employee work and he creates a Task");
3 var januszTask = worker3.WorkAsync(10);
4 Console.WriteLine("Work for Janusz was commissioned and he began to perform. ←↩

Janusz returned the task so we can wait for it");
5 januszTask.Wait();

Paweł Paduch Concurrent Programming - Tasks 52 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Waiting with await

A method call returning a task. This time waiting with await.
Listing 22: An example of calling a method that creates and returns a
task

1 Worker worker4 = new Worker("Grazyna");
2 Console.WriteLine("We commission the employee to work and he creates a Task");
3 var grazynaTask = worker4.WorkAsync(10);
4 Console.WriteLine("The work for Grazyna was commissioned and she began to perform.\←↩

nTGrazyna returned task, so we can wait for it with await");
5 await grazynaTask;

When we use the word await, the method we use await must be
async.

Paweł Paduch Concurrent Programming - Tasks 53 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Async Task Main

How to use async methods in Main. You need to create an
asynchronous main

Listing 23: An example of the Main method with async
1 public static void Main(string[] args)
2 {
3 Task.Run(async () =>
4 {
5 Console.WriteLine("In Main before await");
6 await MainAsync(args); //you need to create an asynchronous Main
7 Console.WriteLine("In Main after await");
8 }).GetAwaiter().GetResult();//and wait for it to finish
9 Console.WriteLine("We can finish here");
10 Console.ReadLine();
11 }
12 public static async Task MainAsync(string[] args)
13 ...
14

Paweł Paduch Concurrent Programming - Tasks 54 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Subcontractor async await

An example of a method using async await.

Listing 24: An example of an asynchronous method that uses await
1 public async Task WorkOrderedAsync(int howMuch)
2 {
3 Console.WriteLine($"Worker {Name} has ordered job...");
4 await PracaAsync(howMuch);
5 Console.WriteLine($"Worker {Name} received ordered job (used await)");
6 }
7

Paweł Paduch Concurrent Programming - Tasks 55 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Subcontractor async await

An example of calling a method using async await.

Listing 25: Invoking an async method that uses await
1 Worker worker5 = new Worker("Stefan");
2 Console.WriteLine("We are ordering the job to the worker Stefan and he's ordering the job ←↩

farther");
3 var stefanTask = worker5.WorkOrderedAsync(10);
4 Console.WriteLine("Work for Stefan was commissioned and he commissioned it further.\nStefan←↩

returned the task so we can wait for it with await");
5 await stefanTask;

Paweł Paduch Concurrent Programming - Tasks 56 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

We are waiting for tasks

An example of waiting for all tasks

Listing 26: An example of waiting for tasks (SimpleTasks)
1 var tasks = new Task[3];
2 for (var i = 0; i < 3; i++)
3 {
4 tasks[i] = (Task.Run(() =>
5 {
6 Console.WriteLine("One of 3 is waiting");
7 Thread.Sleep(i * 500);
8 Console.WriteLine("One of 3 has finished");
9 }));
10 }
11 Console.WriteLine("Waiting for all 3");
12 Task.WaitAll(tasks);
13 Console.WriteLine("We got all 3");
14 var resultTasks = Task.WhenAll(tasks); //Returns the task with everyone
15 // var resultTasks = Task.WhenAll(tasks).Result; //for that to be the case, they have to

return something
16

Paweł Paduch Concurrent Programming - Tasks 57 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Wrong passing parameter

Wrong passing data to the task.

Listing 27: Example of wrong parameter passing
1 var tasks2 = new Task<int>[3];
2 for (var i = 0; i < 3; i++)
3 {
4 tasks2[i] = (Task<int>.Run(() =>
5 {
6 Thread.Sleep(i * 500);
7 return i * 2;//Don’t do that!!!
8 }));
9 }
10 var resultTasks2 = Task.WhenAll(tasks2);
11 foreach (var item in resultTasks2.Result)
12 {
13 Console.WriteLine($"Task count and return wrong number: {item}");
14 }
15

We get the same value because we’re using the i variable, which
ends up being 3

Paweł Paduch Concurrent Programming - Tasks 58 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Correct passing parameter

Data passed to the task via the parameter.

Listing 28: An example of a correct parameter passing
1 var tasks3 = new Task<int>[3];
2 for (var i = 0; i < 3; i++)
3 {
4 tasks3[i] = (new Task<int>((o) =>
5 {
6 Thread.Sleep((int)o * 500);
7 return (int)o * 2;
8 }, i));
9 }
10 tasks3.ToList<Task>().ForEach((t) => t.Start());
11 var resultTasks3 = Task.WhenAll(tasks3);
12 resultTasks3.Result.ToList().ForEach((i) => Console.Writeine($"Task count and ←↩

return: {i}"));
13

We get the next values because i is passed by the parameter.

Paweł Paduch Concurrent Programming - Tasks 59 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

ContinueWith

An example of a simple continuation

Listing 29: An example of a simple continuation
1 Task firstTask = Task.Factory.StartNew(() =>
2 {
3 Console.WriteLine("First task has started");
4 Thread.Sleep(1000);
5 Console.WriteLine("First task has finished");
6 }
7);
8 Task secondTask = firstTask.ContinueWith(ant =>
9 {
10 Console.WriteLine("Second task has started");
11 Thread.Sleep(1000);
12 Console.WriteLine("Second task has finished");
13 }
14);
15 await secondTask;

Paweł Paduch Concurrent Programming - Tasks 60 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

ContinueWith and parameter

An example of a task that continues its calculations after its
predecessor

Listing 30: An example of the continuation of calculations
1 var intTask = Task.Run(() =>
2 {
3 Thread.Sleep(1000);
4 return 12;
5 });
6 var continueTask = intTask.ContinueWith((x) => { Thread.Sleep(1000); return x.Result / 2; });
7 Console.WriteLine($"We have got result = {intTask.Result}");
8 Console.WriteLine($"We have got result2 = {continueTask.Result}");

intTask is a task that returns some number (12), that result is
passed to the next continueTask task.

Paweł Paduch Concurrent Programming - Tasks 61 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

ContinueWith and parameter, shorter notation

The previous example can be written to a single command using
dotted notation.

Listing 31: An example of the continuation of calculations v2
1 int result = Task.Run(() =>
2 {
3 Thread.Sleep(1000);
4 return 12;
5 }.ContinueWith((x) => { Thread.Sleep(1000); return x.Result / 2; })
6 .Result;
7

Paweł Paduch Concurrent Programming - Tasks 62 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Continuation with the exception

Listing 32: Continuation with the exception
1 Task<int> task1ex = Task.Factory.StartNew<int>(() => { throw new Exception("The first one ←↩

threw an exception"); });
2 //Task<int> task2ex = task1ex.ContinueWith<int>(ant => Console.WriteLine("Exception: " +

ant.Exception.Message); return 0;);
3 //A safe patern states that we should forward an exception to the place where we expect the

result
4 Task<int> task2ex = task1ex.ContinueWith<int>(ant => { if (ant.Exception != null) throw ant.←↩

Exception; return 0; });
5 try
6 {
7 Console.WriteLine($"Result of task2ex: {task2ex.Result}");
8 }
9 catch (AggregateException ae)
10 {
11 Console.WriteLine("AggregateException has message: " + ae.Message);
12 foreach (var ex in ae.InnerExceptions)
13 {
14 Console.WriteLine("I caught exception: " + ex.Message);
15 Console.WriteLine("Inner exception:" + ex.InnerException.Message);
16 }
17 }

Paweł Paduch Concurrent Programming - Tasks 63 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Different paths for exceptions

Listing 33: Example of different paths
1 Task<int> task1r = Task.Factory.StartNew<int>(() => {
2 //uncomment to simulate error
3 //throw new Exception("The first trew an exception");
4 return 1;
5 });
6 Task<int> taskErr = task1r.ContinueWith<int>(ant => { Console.WriteLine("Exception: " + ant.←↩

Exception.Message); return 1; },TaskContinuationOptions.OnlyOnFaulted);
7 Task<int> taskNotErr = task1r.ContinueWith<int>(ant => { Console.WriteLine("There was no ←↩

error") ; return ant.Result+2; }, TaskContinuationOptions.NotOnFaulted);
8 try
9 {
10 if (taskErr != null) await taskErr;
11 if (taskNotErr != null) await taskNotErr;
12 }

Paweł Paduch Concurrent Programming - Tasks 64 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Different paths for exceptions cont.

If the task start condition is not met, then such task is Canceled

Listing 34: Example of different paths
1 catch (AggregateException ae)
2 {
3 Console.WriteLine("AggregateException has message: " + ae.Message);
4 foreach (var ex in ae.InnerExceptions)
5 {
6 Console.WriteLine("I caught exception: " + ex.Message);
7 Console.WriteLine("Inner exception:" + ex.InnerException.Message);
8 }
9 }
10 catch (TaskCanceledException) //if the task start condition is not met, such task is Canceled
11 {
12 Console.WriteLine("The alternate task has been canceled");
13 }

Paweł Paduch Concurrent Programming - Tasks 65 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Continuations and child tasks

An example of collecting exceptions from child process

Listing 35: Descendants throw exceptions
1 TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
2 Task TaskParent = Task.Factory.StartNew(() =>
3 {
4 Task.Factory.StartNew(() => { throw new Exception("my error 1"); }, atp);
5 Task.Factory.StartNew(() => { throw new Exception("my error 2"); }, atp);
6 Task.Factory.StartNew(() => { throw new Exception("my error 3"); }, atp);
7 })
8 .ContinueWith(p => {
9 Console.WriteLine("As a parent, I caught something like that: " + p.Exception);
10 throw p.Exception;
11 },
12 TaskContinuationOptions.OnlyOnFaulted);
13 try
14 {
15 await TaskParent;
16 }

Paweł Paduch Concurrent Programming - Tasks 66 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Continuations and child tasks

Listing 36: Collecting exceptions
1 catch (AggregateException ae)
2 {
3 Console.WriteLine("AggregateException has message: " + ae.Message);
4 foreach (var ex in ae.InnerExceptions)
5 {
6 Console.WriteLine("I caught exception: " + ex.Message);
7 Console.WriteLine("Inner exception:" + ex.InnerException.Message);
8 }
9 }
10 catch (Exception ex)
11 {
12 Console.WriteLine("We have a general exception: ", ex.Message);
13 }

Paweł Paduch Concurrent Programming - Tasks 67 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Conditional continuations

By default, a continuation is scheduled unconditionally — whether
the antecedent completes, throws an exception, or is canceled. You
can alter this behavior via a set of (combinable) flags included
within the System.Threading.TaskContinuationOptions enum. The
three core flags that control conditional continuation are:

NotOnRanToCompletion = 0x10000,

NotOnFaulted = 0x20000,

NotOnCanceled = 0x40000,

Paweł Paduch Concurrent Programming - Tasks 68 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Conditional continuations

These flags are subtractive in the sense that the more you apply,
the less likely the continuation is to execute. For convenience,
there are also the following precombined values:

OnlyOnRanToCompletion = NotOnFaulted | NotOnCanceled,

OnlyOnFaulted = NotOnRanToCompletion | NotOnCanceled,

OnlyOnCanceled = NotOnRanToCompletion | NotOnFaulted

Paweł Paduch Concurrent Programming - Tasks 69 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Conditional continuations

The task fault runs only if there is an error in the task t1. The task
t3 runs unconditionally after fault or t1

time

t1 fault t3
fault

Not fault

Paweł Paduch Concurrent Programming - Tasks 70 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Conditional continuations

Listing 37: An example of conditional continuations
1 Task t1 = Task.Factory.StartNew(() =>
2 {
3 Console.WriteLine("t1 works but it will stop in a while");
4 //uncoment to simulate error
5 //throw new Exception("An error in t1");
6 }
7);
8
9 Task fault = t1.ContinueWith(ant => Console.WriteLine("Task run in case of fault of t1"),
10 TaskContinuationOptions.OnlyOnFaulted);
11
12 Task t3 = fault.ContinueWith(ant => Console.WriteLine("t3 run after task fault"));
13 await t3;

Paweł Paduch Concurrent Programming - Tasks 71 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

A continuation with many predecessors

time

tA

tB

tContiAB

ContinueWhenAll

Paweł Paduch Concurrent Programming - Tasks 72 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

A continuation with many predecessors

time

tA

tB

tContiAB

ContinueWhenAny

Paweł Paduch Concurrent Programming - Tasks 73 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

A conditional continuation - WhenAll

Listing 38: An example of conditional continuation - WhenAll
1 Task tA = Task.Factory.StartNew(() => Console.Write("A"));
2 Task tB = Task.Factory.StartNew(() => Console.Write("B"));
3 Task tContiAB = Task.Factory.ContinueWhenAll(new Task[] { tA, tB }, tasks =>
4 { Console.WriteLine("\nContinuation after A and B""); }
5);
6 await tContiAB;

Paweł Paduch Concurrent Programming - Tasks 74 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Continuation with multiple predecessors and values

Listing 39: n example of conditional continuation - WhenAll and values
1 Task<int> tRetA = Task.Factory.StartNew(() => { Console.WriteLine("A returns 11"); return 11;←↩

});
2 Task<int> tRetB = Task.Factory.StartNew(() => { Console.WriteLine("B returns 22"); return 22;←↩

});
3 Task<int> tRetAB = Task.Factory.ContinueWhenAll(new Task<int>[] { tRetA, tRetB }, tasks =>
4 { Console.WriteLine($"Continuation after task A returning {tasks[0].Result} i and task B ←↩

returning {tasks[1].Result}");
5 return tasks.Sum(t => t.Result); }
6);
7 Console.WriteLine("Sum from task A and B: " + tRetAB.Result);

Paweł Paduch Concurrent Programming - Tasks 75 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

continuation with many successors

time

tSuccessorA

tPredecessor

tSuccessorB

ContinueWith

Paweł Paduch Concurrent Programming - Tasks 76 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Continuation with many successors

Listing 40: An example of continuation by many successors
1 Task tPredecessor = Task.Factory.StartNew(() => Console.Write("Predecessor"));
2 Task tSuccessorA = tPredecessor.ContinueWith(ant =>
3 {
4 Console.WriteLine("\nContinuation A after predecessor");
5 });
6 Task tSuccessorB = tPredecessor.ContinueWith(ant =>
7 {
8 Console.WriteLine("\nContinuation B after predecessor");
9 });
10 await tSuccessorA;
11 await tSuccessorB;

Paweł Paduch Concurrent Programming - Tasks 77 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Scheduller

The scheduler assigns tasks to threads

All tasks are associated with the scheduler, which is
represented by the abstract TaskScheduler class
The framework provides two implementations

Default scheduler that works with the CLR thread pool
Synchronization context scheduler, designed primarily to help
with the WPF and WinForms threading model where UI
elements are only accessible from the thread that created it.

Paweł Paduch Concurrent Programming - Tasks 78 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Scheduller

For example, we have a function that returns data for a long
time, e.g. calling a webservice or a calculation method.

After receiving the data, we want to display that data in one
of the controls.

A continuation task of the retrieval task will do.

The continuation task will have the indicated scheduler
context obtained from the window where the given control is
embedded

This way it can be safely updated.

Paweł Paduch Concurrent Programming - Tasks 79 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Scheduller and UI

Listing 41: Example of Scheduler and UI
1 TaskScheduler _uiScheduler;
2 public MainWindow()
3 {
4 InitializeComponent();
5 progress = new Progress<int>(percent =>
6 {
7 progressBar.Value = percent;
8
9 });
10 _uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
11 }
12 private string SomeMethodLongReturningData()
13 {
14 Thread.Sleep(5000); return "We have it...";
15 }

Paweł Paduch Concurrent Programming - Tasks 80 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Task Scheduller and UI

Listing 42: Example of Scheduler and UI
1 TaskScheduler _uiScheduler;
2 public MainWindow()
3 {
4 InitializeComponent();
5 _uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
6 }
7 private string SomeMethodLongReturningData()
8 {
9 Thread.Sleep(5000); return "We have it...";
10 }
11
12 private void GoBT_Click(object sender, RoutedEventArgs e)
13 {
14 var client = new HttpClient();
15 Task.Factory.StartNew<string>(JakasMetodaCoDlugoZwracaDane)
16 .ContinueWith(ant =>
17 {
18 contentViewer.AppendText(ant.Result);
19 }, _uiScheduler);
20 }

Paweł Paduch Concurrent Programming - Tasks 81 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

Questions

?

Paweł Paduch Concurrent Programming - Tasks 82 z 83

Introduction
TAP
TAP

Examples

Task starting
Async and Await
Waiting and continuation
Conditional continuations
Task Schedullers

The End

Thank You.

Paweł Paduch Concurrent Programming - Tasks 83 z 83

	Introduction
	Plan
	Bibliography
	Basic concepts
	Patterns of asynchronous programming
	Comparison

	TAP
	Naming and Return Types
	Initializing
	Exceptions
	Execution

	TAP
	Statuses
	Cancelation
	Progress
	Progress - Implementation

	Examples
	Task starting
	Async and Await
	Waiting and continuation
	Conditional continuations
	Task Schedullers

