Concurrent Programming

Algorithms

Merge Sort

Algorithm :

1. IF you are the root
THEN load the array to be sorted

ELSE get the array from the parent process

Merge Sort

2. IF the array has more than 2 elements AND (number of
processes < max processes) [you can also add a condition
like “array not already sorted”] THEN

* create 2 processes and send each a (roughly equal)
part of the array

 wait for the two sorted arrays
* merge them into one sorted array

ELSE sort the current array (in the simplest case, return 1
element or compare 2

Merge Sort

3. IF you are the root THEN display/save the result
ELSE send the sorted array back to the parent

Merge Sort

4,2,7,6,1,8,5,0,3,9
4,2,7,6,1 8,5,0,3,9
,2,4,0,7 0,3,5,8,9

Ore L 2ee 3 4 S O T 8.9

Merge Sort

4,2,7,6,1,8,5,0,3,9

> e R
4,2,7,6,1 8,5,0,3,9
Ve S R T e S
4 2 7 6 | 8$5 0,3.9

>8\A
0,3,5,8,9
2K
12467

0,1,2,3,4,5,6,7,8,9

Oscillatory Sorting

For a sequence of length n, we create two sets of processes:
ALA;,.. A,
Bo,B1,...B.

Oscillatory Sorting

A type tasks work as follows:

* Get 2 numbers
* the smaller one Is sent to B, ;
* bigger to B

Oscillatory Sorting

A type tasks work as follows:

* Get 2 numbers
* the smaller one iIs sent to A,
* bigger to A+

The outermost elements do nothing but return a
number

After 2n cycles we have the result ready

Oscillatory Sorting

10

Oscillatory Sorting

Ll

Oscillatory Sorting

12

Oscillatory Sorting

13

Oscillatory Sorting

14

Oscillatory Sorting

15

Matrix multiplication

Application:

* in mathematics, solving systems of linear
equations using Gauss's method

* Recording geometric objects in linear space In
physics, so-called tensors

* Three-dimensional graphics, transformations

16

Matrix multiplication

Definition

The product of the matrix A=[aj].xp by the matrix
B=[b;].xm IS called such a matrix C=[Cj].xm We
write C=Ae<B, that

p
C,i= Z a; b, dai=12, .nj=12..m
k=1

17

Matrix multiplication

Ac B e M CeM

m xk kxn m xn
4 @, ... A Dy Dy By Ciz o G
aE1 aEE aEk ® b21 bEE bEn Cz1 CZE C2n
am“l amE amk blﬂ bkE bkn Cm*l sz Cmn

b11

[a'l1 au a’lk] Eb? — C
bm

18

Matrix multiplication

Some useful properties:

If A, B, and C are matrices of appropriate
dimensions, then:

. A(BC)=(AB)C

2. (AB)=(A)B

3. (A+B)C=AC+BC
4. C(A+B)=CA+CB
nld=A 00y A ;11

19

Matrix multiplication

»Divide and Conquer” Algorithm

Getting matrix C 1s the result of independent arithmetic
operations on the rows of matrix A and the columns of matrix B.
This makes 1t intuitive to divide the task into multiple threads,
cach independently computing an element of matrix C. In this
case, there must be m™*n such partitions (the number of threads).
The cost of the operation is O(n?).

20

Matrix multiplication

Every element A, B, C, represents a small submatrix, and the

same computational operations are applied to it as to scalar
clements.

C, Cp
22 _C21 Cy)

[N
[EREN

21

Example:

Matrix multiplication

0
]
0
1

Such multiplication can be divide into four

2
]
.
]

DO — D WO

o o B =

i 090 O CD

operations analogous to the one below.

-
-1 4-

.2 3.

-1 2-

.2 3.

R

Matrix multiplication

Strassen’s method

- From the partitioned matrix, compute seven auxiliary matrices
m; of size n/2

m;=(A1-A2)*(B1+B)
m2:(A11 "‘Azz) *(Bu "‘Bzz)
ms;=(A1-A1) *(B11+B13)
m4=(A11 "‘Azz) *B1)
ms=A; *(B 12-322)
ms=A;; *(B.z]-Bu)
m7=(A21 "‘Azz) *Bi

23

Matrix multiplication

Compute the components Ci1j of the resulting matrix C

Ci=m;+my-my+mg
Cro=mytm;
Co=mgtm;
Coo=my-msz+ms-m;

The computational cost of the above algorithm 1s estimated as
0(nlog27)

24

Matrix multiplication

Canon’s Algorithm
* We assume a task grid of size m x m.
e Each process (tij where 0<1,)<m) contains blocks Cipp A and

B...

ij
* At the beginning of the algorithm, each process on the
diagonal (1.e., I where 1=7) sends its block A to all other

Processes 1n row 1.
o After the transmission of A, all tasks compute AxB, and add

the result to Cij.

* In the next step, the column of matrix blocks B i1s rotated. It
means, each process t. sends its block to t,, .. Process t,. sends

its block Btot

Dj’ 25

Matrix multiplication

* Now the processes return to the first step.

e The block A becomes the fundamental piece of

information for all other processes in row 1.

* The algorithm continues.

e After m iterations, the matrix C contains the result of the
multiplication AxB, and the rotated matrix B returns to its
original configuration.

26

Matrix multiplication

N = O

A

1 2
O 3|°
2 1

0

1

3
2
0

C

27

Matrix multiplication

o !
|

| o [l 3

Y I

2 23.1

From matrix A, we take the values located on the diagonal. These
values are sent to neighboring processes in the same row. The
received values are multiplied by the corresponding values from

matrix B, and the result 1s added to the partial result in matrix C.
28

Matrix multiplication

'

The columns of matrix B are cyclically shifted downward.

)

Matrix multiplication

\

il |
Ml

We shift the diagonal one row downward. The new diagonal values are sent to neighboring
processes in the same row. These transmitted values are multiplied by the corresponding
blocks of matrix B, and the result is added to the partial result in matrix C.

30

Matrix multiplication
4 e %
l. Ol
'mls

|

The columns of matrix B are cyclically shifted downward.

'

ek
(\®)

31

Matrix multiplication

| Y

M
Y |
HCE
I] R

2 21.1

We shift the diagonal one row downward. The new diagonal values are sent to neighboring
processes in the same row. These transmitted values are multiplied by the corresponding
blocks of matrix B, and the result is added to the partial result in matrix C.

32

3D matrix multiplication

A B C
I 2111 1 3

1 31° 1 2|=

2 2 3 0

5 y

e [[|

Genetic Algorithm

* A genetic algorithm is a type of algorithm that
searches the space of alternative solutions to a
problem in order to find the best ones.

* |t belongs to the class of evolutionary
algorithms.

* The concept was introduced by John Henry
Holland.

Source: wikipedia 34

Genetic Algorithm

Environment defines the problem

Population — a set of individuals

Genotype — information assigned to an individual
Phenotype — traits evaluated by the fitness function
Fitness function — models the environment
Chromosomes — components of the genotype

Genes — elements of chromosomes

Source: wikipedia

30

Genetic Algorithm

Common Key Features

Use of genetic operators like crossover and mutation
Parallel search from multiple starting points

Search direction guided by solution quality

Intentional randomness introduced to avoid local optima

Source: wikipedia

36

Genetic Algorithm

Basic Algorithm Steps

Randomly generate initial population

Develop individuals and evaluate fithess <
Check exit condition

Selection (better individuals have higher chance)
Apply genetic operators:

» Crossover

» Mutation

Create new generation (there algorithm repeats from step 2)

Source: wikipedia

37

Genetic Algorithm

Encoding

Chromosome as vector of genes

Genes can be binary, integer, or real numbers
Logarithmic encoding

Tree structures also possible

Source: wikipedia

38

Genetic Algorithm

Evaluation

 Chromosomes are input to a function f(x)
* The value of f(x) indicates how well-adapted the individual is x

* Optimization seeks the maximum or minimum of f(x)

Source: wikipedia

39

Genetic Algorithm

Selection Methods

Roulette wheel

The entire roulette wheel corresponds to the sum of the fithess
function values for all chromosomes in the population.

For each chromosome ch, for i=1,2,...,N, where N is the
population size, a segment of the wheel is assigned according to

the formula Ch.=p %100 %
The probability is expressed as:
F(ch,
ps<Chi): N <C l> przy(i=1,2,...,N)
> F(ch,)

et
F(ch) is the fitness function value of chromosome ch.

The selection (spinning) is performed N times o

Genetic Algorithm

Natural Selection Methods

* Elitist Method

- The best individual is passed on unchanged to the next
generation.

e Tournament Method

- Individuals are divided into groups, and the best solution from
each group is selected.

 Ranking Method

— Solutions are sorted based on their quality and assigned
ranks. Then, a linear function is typically used to select
an appropriate number of individuals, starting from the

best-ranked.

Source: wikipedia 41

Genetic Algorithm

Crossover

* The basic crossover method involves splitting the chromosome at a
chosen locus point

Zrédto: wikipedia

42

Genetic Algorithm

Other Crossover Methods
e Partially Mapped Crossover (PMX)

- Preserves relative ordering and position of genes by
partially mapping segments between parents. (TSP)

* Order Crossover (OX)

- Maintains the relative order of genes from one parent while
filling in the remaining genes from the other parent. (Queue
optimization, production planing)

43

Genetic Algorithm

Example
* Finding the maximum of the function f(x)=x2 in the range 0..31
 We choose a 5-bit encoding system for the decision variable x.

* The population consists of 4 binary strings.

01101
11000
01000
10011

44

Genetic Algorithm

Example

2 11000 24 576 049 192 2 110]00 1 4 11001 25 625

4 10011 19 361 0,31 1,23 1 10/011 3 2 10000 16 256

Avg 293 0,25 1 1 439

Genetic Algorithm

Application in Concurrent Programming
 Master-slave architecture

— The master process delegates the development of the
population to worker processes. Each worker (slave)
may handle an entire group or a single individual. Slaves
return the fitness function values to the master. The
master is responsible for performing natural selection.

 Peer-to-peer (P2P) architecture

- Natural selection is performed without a central coordinating
process. Chromosomes are exchanged directly between
processes.

46

Ant Colony Optimization

A Few Words About Ants

Ants are practically blind.

They possess an excellent sense of smell.
Their brains are extremely small.

When acting collectively, they can find the shortest path between
food and the nest.

They rely on pheromones and the phenomenon of stigmergy — a
form of indirect communication through environmental changes that
others can detect and respond to.

As ants march, they leave pheromone trails behind.
Pheromones continuously evaporate over time.
When deciding which path to follow, ants are guided by the intensity

of the pheromone scent.
47

Ant Colony Optimization

Algorithm Behavior
Ants randomly disperse from the nest in search of food.

Those that find shorter paths return more quickly, retracing their own
pheromone trails.

On shorter paths, the number of ants per unit of time is higher, which
leads to more frequent pheromone reinforcement.

Longer paths, being visited less often, experience pheromone
evaporation and gradually disappear.

48

Ant Colony Optimization

Decision-Making in the Algorithm

* Ants follow a predefined path.

Ol S

\/\GO" kb(/
) ."
(s ~ o co DT
- SN SRR % =
N
)2
%)
25T
49

Ant Colony Optimization

Decision-Making in the Algorithm

Ants that follow the shorter path return faster and reinforce the pheromone
trail sooner. This creates a stronger signal for other ants, indicating that this
route 1s more optimal.

) 1) O
' vl SIS (9)] LS S
e cCCcos - = -
AN SHE RSk
(0N o

50

Ant Colony Optimization

* Decision-Making in the Algorithm

* As the algorithm progresses, ants gradually converge toward the shortest and
most efficient path.

Sl

Ant Colony Optimization

Finding the Optimal Route in the Traveling Salesman Problem (TSP)
Starting point — arbitrary

Goal of a single ant — visit all cities exactly once

Movement — ants travel along the edges of a graph

[terative behavior — ants construct solutions in multiple iterations

Pheromone update — applied only after all ants have completed their tours in
a given iteration (Cycle Ant System — CAS)

Pheromone quantity — either:

— Inversely proportional to the length of the path found, or
— Deposited only by the best-performing ant

352

Ant Colony Optimization

Finding the Optimal Route in the Traveling Salesman Problem (TSP)
Initially, each edge has an equal amount of pheromone.
Each ant selects a random starting point.

When choosing the next i-th node 1n its tour, the ant 1s guided by a decision
table that combines pheromone intensity and heuristic information.

A4, =la,; (O]~

53

Ant Colony Optimization

Elements of the Decision Table Are Defined by the Formula:
et P
a,; = : SN
D [z, [n,]

[leN;

T, - pheromone intensity on edge i—j

N;=—— The heuristic value indicating the attractiveness of the connection

i between point { and point j. ¢ tis a constant d 1s the distance
between nodes i and j

N - — the set of all unvisited nodes directly reachable from node i

The parameters a and £ are used to adjust the relative importance of
pheromone intensity and heuristic information when ants choose their next
move. A higher a« emphasizes pheromone trails, while a higher f gives more
weight to heuristic desirability (e.g., shorter distances).

54

Ant Colony Optimization

The probability that ant k, currently at node i, will choose node jeN*
during iteration t 1s given by:

Where NV l.k o N ; set of feasible (unvisited) nodes for ant k from node i.

55

Ant Colony Optimization

Once all ants have found a path, we select the best one or proportionally
update the pheromone amount on each edge of the route by adding m/L of

pheromone, where m is a constant and L 1s the length of the found path.
(CAS Strategy).

Evaporation is also involved. We evaporate a constant portion of the
pheromone from each edge of the graph:

fa *

56

Ant Colony Optimization

In the context of concurrent processing, each ant can be a separate thread.
Synchronization should guarantee synchronization between subsequent
stages when updating the pheromone map

57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

