
Concurrent Programming

Algorithms

 2

Merge Sort

Algorithm :

1. IF you are the root
THEN load the array to be sorted

ELSE get the array from the parent process

 3

Merge Sort

2. IF the array has more than 2 elements AND (number of
processes < max processes) [you can also add a condition
like “array not already sorted”] THEN

● create 2 processes and send each a (roughly equal)
part of the array

● wait for the two sorted arrays

● merge them into one sorted array

ELSE sort the current array (in the simplest case, return 1
element or compare 2

 4

Merge Sort

3. IF you are the root THEN display/save the result

ELSE send the sorted array back to the parent

 5

Merge Sort

4,2,7,6,1 8,5,0,3,9

1,2,4,6,7 0,3,5,8,9

0 1 98765432

4,2,7,6,1,8,5,0,3,9

 6

Merge Sort

4,2,7,6,1 8,5,0,3,9

6,1 0,3,9

4,2,7,6,1,8,5,0,3,9

4,2,7 8,5

4,2 7

0, 3, 5, 8, 9

5,81,6

2,4

2,4,7

1,2,4,6,7

0,1,2,3,4,5,6,7,8,9

 7

Oscillatory Sorting

For a sequence of length n, we create two sets of processes:

A1,A2,...An

B0,B1,...Bn

A
1

A
n

A
2

B
1

B
n

B
2

B
0

 8

Oscillatory Sorting

Ai type tasks work as follows:

• Get 2 numbers
• the smaller one is sent to Bi-1

• bigger to Bi

 9

Oscillatory Sorting

Ai type tasks work as follows:

• Get 2 numbers
• the smaller one is sent to Ai

• bigger to Ai+1

The outermost elements do nothing but return a
number

After 2n cycles we have the result ready

 10

Oscillatory Sorting

4 354 35

4 354 35

 11

Oscillatory Sorting

4

3

54 35

4 354

3

5

 12

Oscillatory Sorting

4 334 55

4 554 33

 13

Oscillatory Sorting

4

3

43 55

3 554

3

4

 14

Oscillatory Sorting

3 534 54

4 543 53

 15

Oscillatory Sorting

3

4

43 55

3 553

4

4

 16

Matrix multiplication

Application:
● in mathematics, solving systems of linear

equations using Gauss's method
● Recording geometric objects in linear space in

physics, so-called tensors
● Three-dimensional graphics, transformations

 17

Matrix multiplication

Definition

 The product of the matrix A=[aij]nxp by the matrix
B=[bij]pxm is called such a matrix C=[cij]nxm we
write C=A•B, that

 dla i=1,2,...,n;j=1,2,...,mc ij=∑
k=1

p

aik •bkj

 18

Matrix multiplication

 19

Matrix multiplication

Some useful properties:

If A, B, and C are matrices of appropriate
dimensions, then:

1. A(BC)=(AB)C
2. (AB)=(A)B
3. (A+B)C=AC+BC
4. C(A+B)=CA+CB
5. IA=A, gdy Anxn i Inxn

 20

Matrix multiplication

„Divide and Conquer” Algorithm

Getting matrix C is the result of independent arithmetic
operations on the rows of matrix A and the columns of matrix B.
This makes it intuitive to divide the task into multiple threads,
each independently computing an element of matrix C. In this
case, there must be m*n such partitions (the number of threads).
The cost of the operation is O(n3).

 21

Matrix multiplication

Every element A
ij
B

jk
C

ik
 represents a small submatrix, and the

same computational operations are applied to it as to scalar
elements.

A=[A11 A12

A21 A22
] B=[B11 B12

B21 B22
] C=[C11 C12

C21 C22
]

 22

Matrix multiplication

Example:

[0 1
1 4]•[0 1

2 3][2 3
1 2]•[1 1

0 1]=[2 3
8 13][2 5

1 3]=[4 8
9 16]

[0 1 2 3
1 4 1 2
0 2 2 1
1 2 1 2

]•[0 1 2 0
2 3 1 2
1 1 2 3
0 1 0 1

]=[4 8 5 11
9 16 8 13
6 9 6 11
5 10 6 9

]
Such multiplication can be divide into four
operations analogous to the one below.

 23

Matrix multiplication

 Strassen’s method

 - From the partitioned matrix, compute seven auxiliary matrices
mi of size n/2

m1=(A12-A22)*(B21+B22)
m2=(A11+A22)*(B11+B22)
m3=(A11-A21)*(B11+B12)
m4=(A11+A12)*B22

m5=A11*(B12-B22)
m6=A22*(B21-B11)
m7=(A21+A22)*B11

 24

Matrix multiplication
Compute the components Cij of the resulting matrix C

C11=m1+m2-m4+m6

C12=m4+m5

C21=m6+m7

C22=m2-m3+m5-m7

The computational cost of the above algorithm is estimated as
O(nlog27)

 25

Matrix multiplication

Canon’s Algorithm
● We assume a task grid of size m x m.
● Each process (t

ij
 where 0<i,j<m) contains blocks C

ij
, A

ij
 and

B
ij
.

● At the beginning of the algorithm, each process on the
diagonal (i.e., t

ij
 where i=j) sends its block A

ij
 to all other

processes in row i.
● After the transmission of A

ii
, all tasks compute A

ii
xB

ij
 and add

the result to C
ij
.

● In the next step, the column of matrix blocks B is rotated. It
means, each process t

ij
 sends its block to t

(i-1)j
. Process t

0j
 sends

its block B to t
(m-1)j

.

 26

Matrix multiplication
● Now the processes return to the first step.
● The block A

i(i+1)
 becomes the fundamental piece of

information for all other processes in row i.

● The algorithm continues.
● After m iterations, the matrix C contains the result of the

multiplication AxB, and the rotated matrix B returns to its
original configuration.

 27

Matrix multiplication

[0 1 2
1 0 3
2 2 1]•[1 1 3

0 1 2
2 3 0]=[4 7 2

7 10 3
4 7 10]

A CB

10 0

01 0

22 0

11 0

10 0

32 0

32 0

23 0

01 0

 28

Matrix multiplication

10 0

01 0

22 0

11 0

10 0

32 0

32 0

23 0

01 0

From matrix , we take the values located on the diagonal. These 𝐴
values are sent to neighboring processes in the same row. The
received values are multiplied by the corresponding values from
matrix , and the result is added to the partial result in matrix .𝐵 𝐶

+=0x1

+=0x0

+=1x2

+=0x1

+=0x1

+=1x3

+=0x3

+=0x2

+=1x0

0

0

2

0

0

3

0

0

0

 29

Matrix multiplication

10 0

01 0

22 2

11 0

10 0

32 3

32 0

23 0

01 0

The columns of matrix are cyclically shifted downward.𝐵

2

1

0

3

1

1

0

3

2

 30

Matrix multiplication

20 0

11 0

02 2

31 0

10 0

12 3

02 0

33 0

21 0

We shift the diagonal one row downward. The new diagonal values are sent to neighboring
processes in the same row. These transmitted values are multiplied by the corresponding
blocks of matrix , and the result is added to the partial result in matrix .𝐵 𝐶

+=2x2

+=1x1

+=2x0

+=2x3

+=1x1

+=2x1

+=2x0

+=1x3

+=2x2

4

1

2

6

1

5

0

3

4

 31

Matrix multiplication

20 4

11 1

02 2

31 6

10 1

12 5

02 0

33 3

21 4

The columns of matrix are cyclically shifted downward.𝐵

0

2

1

1

3

1

2

0

3

 32

Matrix multiplication

00 4

21 1

12 2

11 6

30 1

12 5

22 0

03 3

31 4

We shift the diagonal one row downward. The new diagonal values are sent to neighboring
processes in the same row. These transmitted values are multiplied by the corresponding
blocks of matrix , and the result is added to the partial result in matrix .𝐵 𝐶

+=0x1

+=3x2

+=2x1

+=1x1

+=3x3

+=2x1

+=1x2

+=3x0

+=2x3

4

7

4

7

10

7

2

3

10

 33

3D matrix multiplication

[0 1 2
1 0 3
2 2 1]•[1 1 3

0 1 2
2 3 0]=[4 7 2

7 10 3
4 7 10]

A CB

10
01

10
11

30
21

11
00

11
10

31
20

22 32 02

12
02

21

12
12

31

32
22

01

23 33 03

 34

Genetic Algorithm

● A genetic algorithm is a type of algorithm that
searches the space of alternative solutions to a
problem in order to find the best ones.

● It belongs to the class of evolutionary
algorithms.

● The concept was introduced by John Henry
Holland.

Source: wikipedia

 35

Genetic Algorithm

● Environment defines the problem

● Population – a set of individuals

● Genotype – information assigned to an individual

● Phenotype – traits evaluated by the fitness function

● Fitness function – models the environment

● Chromosomes – components of the genotype

● Genes – elements of chromosomes

Source: wikipedia

 36

Genetic Algorithm

Common Key Features
● Use of genetic operators like crossover and mutation

● Parallel search from multiple starting points

● Search direction guided by solution quality

● Intentional randomness introduced to avoid local optima

Source: wikipedia

 37

Genetic Algorithm

Basic Algorithm Steps
● Randomly generate initial population

● Develop individuals and evaluate fitness

● Check exit condition

● Selection (better individuals have higher chance)

● Apply genetic operators:   

• Crossover   

• Mutation

● Create new generation (there algorithm repeats from step 2)

Source: wikipedia

 38

Genetic Algorithm

Encoding
● Chromosome as vector of genes

● Genes can be binary, integer, or real numbers

● Logarithmic encoding

● Tree structures also possible

Source: wikipedia

 39

Genetic Algorithm

Evaluation
● Chromosomes are input to a function f(x)

● The value of f(x) indicates how well-adapted the individual is x

● Optimization seeks the maximum or minimum of f(x)

Source: wikipedia

 40

Genetic Algorithm

Selection Methods
● Roulette wheel

– The entire roulette wheel corresponds to the sum of the fitness
function values for all chromosomes in the population.

– For each chromosome ch
i
, for i=1,2,...,N, where N is the

population size, a segment of the wheel is assigned according to
the formula

The probability is expressed as:

– F(ch
i
) is the fitness function value of chromosome ch

i

– The selection (spinning) is performed times𝑁

Chi= ps∗100 %

pschi=
F chi

∑
i=1

N

F chi
przy i=1,2 , ... , N 

 41

Genetic Algorithm

Source: wikipedia

Natural Selection Methods
● Elitist Method  

– The best individual is passed on unchanged to the next
generation.

● Tournament Method  

– Individuals are divided into groups, and the best solution from
each group is selected.

● Ranking Method  

– Solutions are sorted based on their quality and assigned
ranks.  Then, a linear function is typically used to select
an appropriate number of individuals, starting from the
best-ranked.

 42

Genetic Algorithm

Źródło: wikipedia

Crossover
● The basic crossover method involves splitting the chromosome at a

chosen locus point

0 1 1 0 0 1

1 0 1 1 0 0

1 0 1 0 0 1

0 1 1 1 0 0

 43

Genetic Algorithm
Other Crossover Methods

● Partially Mapped Crossover (PMX)  

– Preserves relative ordering and position of genes by
partially mapping segments between parents. (TSP)

● Order Crossover (OX)  

– Maintains the relative order of genes from one parent while
filling in the remaining genes from the other parent. (queue
optimization, production planing)

 44

Genetic Algorithm
Example

● Finding the maximum of the function f(x)=x2 in the range 0..31

● We choose a 5-bit encoding system for the decision variable .𝑥

● The population consists of 4 binary strings.

01101
11000
01000
10011

 45

Genetic Algorithm
Example

#
Initial
Populat
ion

Value x f(x) Proba
bility

Expe
cted
Copie
s

Rando
mly
Select
ed
Copies

Parent
Pool

Ran
dom
choo
sen
Part
ner

Crosso
ver
Point

New
Generation

x f(x)

1 01101 13 169 0,14 0,58 1 011|01 2 4 01100 12 144

2 11000 24 576 0.49 1,92 2 110|00 1 4 11001 25 625

3 01000 8 64 0,06 0,22 0 11|000 4 2 11011 27 729

4 10011 19 361 0,31 1,23 1 10|011 3 2 10000 16 256

Sum 1170 1,00 4 4 1754

Avg 293 0,25 1 1 439

Max 576 0,49 1,97 2 729

 46

Genetic Algorithm
Application in Concurrent Programming

● Master-slave architecture  

– The master process delegates the development of the
population to worker processes.  Each worker (slave)
may handle an entire group or a single individual.  Slaves
return the fitness function values to the master.  The
master is responsible for performing natural selection.

● Peer-to-peer (P2P) architecture  

– Natural selection is performed without a central coordinating
process.  Chromosomes are exchanged directly between
processes.

 47

Ant Colony Optimization
A Few Words About Ants

● Ants are practically blind.

● They possess an excellent sense of smell.

● Their brains are extremely small.

● When acting collectively, they can find the shortest path between
food and the nest.

● They rely on pheromones and the phenomenon of stigmergy — a
form of indirect communication through environmental changes that
others can detect and respond to.

● As ants march, they leave pheromone trails behind.

● Pheromones continuously evaporate over time.

● When deciding which path to follow, ants are guided by the intensity
of the pheromone scent.

 48

Ant Colony Optimization
Algorithm Behavior

● Ants randomly disperse from the nest in search of food.

● Those that find shorter paths return more quickly, retracing their own
pheromone trails.

● On shorter paths, the number of ants per unit of time is higher, which
leads to more frequent pheromone reinforcement.

● Longer paths, being visited less often, experience pheromone
evaporation and gradually disappear.

 49

Ant Colony Optimization
Decision-Making in the Algorithm

● Ants follow a predefined path.

● When ants encounter an obstacle, some go around it from one side, while
others go from the other.

 50

Ant Colony Optimization
Decision-Making in the Algorithm

● Ants that follow the shorter path return faster and reinforce the pheromone
trail sooner. This creates a stronger signal for other ants, indicating that this
route is more optimal.

 51

Ant Colony Optimization
● Decision-Making in the Algorithm

● As the algorithm progresses, ants gradually converge toward the shortest and
most efficient path.

 52

Ant Colony Optimization
 Finding the Optimal Route in the Traveling Salesman Problem (TSP)

● Starting point – arbitrary

● Goal of a single ant – visit all cities exactly once

● Movement – ants travel along the edges of a graph

● Iterative behavior – ants construct solutions in multiple iterations

● Pheromone update – applied only after all ants have completed their tours in
a given iteration (Cycle Ant System – CAS)

● Pheromone quantity – either:

– Inversely proportional to the length of the path found, or

– Deposited only by the best-performing ant

 53

Ant Colony Optimization
 Finding the Optimal Route in the Traveling Salesman Problem (TSP)

● Initially, each edge has an equal amount of pheromone.

● Each ant selects a random starting point.

● When choosing the next -th node in its tour, the ant is guided by a decision 𝑖
table that combines pheromone intensity and heuristic information.

][)]([
iNiji taA 

 54

Ant Colony Optimization
 Elements of the Decision Table Are Defined by the Formula:

● - pheromone intensity on edge →𝑖 𝑗

● The heuristic value indicating the attractiveness of the connection
between point and point . 𝑖 𝑗 c tis a constant d is the distance
between nodes and 𝑖 𝑗

● N
i
- – the set of all unvisited nodes directly reachable from node 𝑖

● The parameters and are used to adjust the relative importance of 𝛼 𝛽
pheromone intensity and heuristic information when ants choose their next
move. A higher emphasizes pheromone trails, while a higher gives more 𝛼 𝛽
weight to heuristic desirability (e.g., shorter distances).

i

Nl
ilil

ijij
ij Nj

t

t
a

i












][)]([

][)]([

 ij

 ij=
c
d ij

 55

Ant Colony Optimization
 The probability that ant , currently at node , will choose node 𝑘 𝑖
during iteration is given by:𝑡

Where set of feasible (unvisited) nodes for ant from node . 𝑘 𝑖

j∈N i
k





k
iNl

il

ijk
ij ta

ta
tp

)(

)(
)(

i

k
i NN 

 56

Ant Colony Optimization
 Once all ants have found a path, we select the best one or proportionally
update the pheromone amount on each edge of the route by adding m/L of
pheromone, where m is a constant and L is the length of the found path.
(CAS Strategy).

Evaporation is also involved. We evaporate a constant portion of the
pheromone from each edge of the graph:

  *ijij 

 57

Ant Colony Optimization
 In the context of concurrent processing, each ant can be a separate thread.
Synchronization should guarantee synchronization between subsequent
stages when updating the pheromone map

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

