

Concurrent programming

Introduction

Bibliography

● M. Ben-Ari - "Principles of Concurrent and Distributed
Programming"

● W. Richard Stevens – "UNIX Network Programming
vol.1 and 2"

● A.S. Tanenbaum - "Distributed Operating Systems"
● Z. Manna, A. Pnueli, The Temporal Logic of Reactive

and Concurrent Systems (Specific ation), Springer-
Verlag, 1992

● Andrew Troelsen - various books

Bibliography

●http://www.albahari.com/threading/
●https://docs.microsoft.com/plpl/dotnet/standard/
asynchronous-programmingpatterns/?
view=netframework-4.7.2
●https://docs.microsoft.com/pl-pl/dotnet/standard/
asynchronous-programming-patterns/task-based-
asynchronous-pattern-tap?view=netframework-
4.7.2

Basic definitions

● Process – a sequence program in progress
● Concurrent processes – processes that may
(but need not) run in parallel. One process must
begin before the end of the other one

● Parallel processes – concurrent processes
executing at the same time

Parallelism and concurrency
physical
processors P

time t

p
1

p
2

p
3

p
4

p
3

p
2
 starts before end of p

1
- they are parallel and concurrent

p
4
 starts before end of p

3
- they are concurrent but not parallel

Basic definitions

● Concurrent program – a program consisting
of several sequential processes that usually
transfer some data to each other or just
synchronize

● Concurrent programming - creating
programs, the execution of which causes a
certain number of concurrent processes
(usually these processes are dependent)

Basic definitions

● Events
● Synchronous – the ones we are waiting for
● Asynchronous – occur unexpectedly at any
time

● The atomic instruction - which cannot be
broken, indivisible

Basic definitions

● Dependent processes – two processes are
called dependent if the execution of either of
them affects the execution of the other

● Shared variable – common variable, used by
several concurrent processes

● Critical section – for example, part of the
process where it uses a shared variable or
common resource

● Synchronization – arranging the actions of
individual processes in time

Basic definitions

In the literature, you can also meet the term -
Distributed - when computing is realizing on
many remote computers

Correctness of Concurrent
Programs

Concurrent program is correct when has safety
properties (properties that must always hold) and
liveness properties(that must eventually hold)

● safety properties - ensuring that there is no
collision and all data is correct.[example Unsafeinteriving]

● liveness properties – if any of the processes is
waiting for an event, it will take place in a finite
time. A special kind of liveness property is called
the fairness property.

Basic definitions
● Weak Fairness - If a thread continually makes
a request (one time) it will eventually be
granted.

● Strong Fairness - If a thread makes a request
infinitely often (many times) it will eventually be
granted.

● Linear Waiting - If a thread makes a request, it
will be granted before any other thread is
granted a request more than once.

● FIFO – If a thread makes a request it will be
granted before any other thread making a later
request.

Common mistakes
● Deadlock – Two or more processes from the

collection P are waiting for an event that only the
other blocked thread from collection P can
generate.

● Livelock - when two processes try to get to the
critical section at the same time and they give up
for an equal moment and try again and again.

● Starvation – A situation in which a process is
infinitely suspended because the event it is waiting
for causes other processes to resume

● Active waiting - the process waiting for the event
constantly checks if it has already occurred,
unnecessarily using the CPU time.
[example ActiveWaiting]

Basic definitions
● Interleaving - The abstraction of concurrent
programming consists in examining the
interleaving sequences of the execution of
atomic instructions of sequential processes

Basic definitions
● For 2 processes consiting respectivly N and M
atomic instructions we have

(N+M)!
N ! M !

● For previous example we have "only" 70
combinations.

● For example 2 processes with 10 atomic
instruction for each, we have 184 756
combinations.

● But when we have 15 atomic instructions
1 307 674 368 000

Simple increment instruction

● LOAD n;
● ADD 1;
● STORE n;

● LOAD n;
● ADD 1;
● STORE n;

LOAD n; LOAD n; ADD 1; ADD 1; STORE n; STORE n;

LOAD n; ADD 1; LOAD n; ADD 1; STORE n; STORE n;

Some interleavings are bad

Basic definitions

We consider only two cases

● Competition - Two processes are competing
for the same resource: computing resource,
memory cell, or communication channel

● Communication - Two processes may want to
communicate to transfer data from one to the
other

All local sections are treated as one atomic
instruction

Time dependencies

Remember!!!
Processes can run at any speed and can respond

to any external signal! No time dependencies!
You can't expect that one process ends before

other one only that it counts faster.

Classic Problems

● Mutual exclusion
● Producer and consumer
● Readers and writers
● Five philosophers
● Byzantine generals

Distributed programming models

Types of communication
● Synchronous communication - necessary

sender and recipient for the exchange of
messages

● Asynchronous communication - after
sending the message, the sender does not
have to wait for the recipient to receive it.

Identifying processes and data flow

● Dedicated channels - both the sender and recipient
know their identifiers. Each message is transferred
without any additional costs related to e.g. address
recalculation.

● Asymmetric communication - The sender knows
the receiver's address, but the receiver does not
need to know it. It is very well suited for client-server
systems

● Broadcast messages - Both the recipient does not
know from whom to receive the message and the
sender does not know the recipient, so it sends it to
everyone.

Creating of processes

● Dynamic
– Flexibility
– Dynamic resource use
– Load balancing

● Static
– Quick initiation
– Specialized tasks

Classification of parallel machines

SISD – Single Instruction Stream, Single Data
Stream

Processor
P

Memory
M

Data
Instructions

Classification of parallel machines

SIMD – Single Instruction Stream, Multiple
Data Stream

P

M

P

M

P

M

Controller
Unit

Classification of parallel machines

MIMD – Multiple Instruction Stream, Multiple
Data Stream

P

M

P

M

P

M

Shared
Memory

Classification of parallel machines

MIMD – Without shared memory,
a distributed system

P

M
P

M
P

M

P

M

P

M

P

M

Architecture - the ring

0 321

Distance between the two most distant units = 0.5 *
p (rounded down) in 2-way transmission and p-1 in
unidirectional

Architecture - 2-dimensional table

0 321

Distance 0,5*(p
x
+p

y
)

4 765

8 11109

15

Architecture - Hypercube

12

11

13

8

9 10

144

3

5

0
1 2

7 6

Architecture - Hypercube

● A hypercube of order n consists of 2n nodes
● Every higher order architecture includes a lower

order architecture
● In the 4-dimensional example shown, we have

a log
2
p distance

The network perfectly shuffled

000 011010001

The disadvantage of a cube is the logarithmic
increase in vertex degrees with its scaling. The
perfectly shuffled network consist of z p=2n
processors.
Two types of links: two-way "exchange" and one-
way "shuffle" (from processor i to 2i mod (p-1)
except p-1)

110101100 111

Architecture - tree
0

1 2 3

121110987654

Advantage: fewest communication channels = p-1
maximum distance = 2 * levels
The disadvantage: when one node fails, the entire branch stops
working

Parallelism classes

Regard to granularity

G=
T comp
T comm

Parallelism classes
● Fine-grained parallelism (small G) large

number of small tasks. It facilitates load
balancing.

● Coarse-grained parallelism (big G) large tasks.
This might result in load imbalance, wherein
certain tasks process the bulk of the data while
others might be idle. The advantage of this type
of parallelism is low communication and
synchronization overhead

● Medium-grained parallelism - is a compromise
between fine-grained and coarse-grained
parallelism

Speedup and Efficiency

Speedup
● To(1) – optimal time of a single-processor

solution
● T(p) – time to complete the task by p

processors

S  p=
To(1)
T(p)

Limit of Speedup
logT(p)

log p

actual boundary of
speedup

theoretical boundary
of speedup

Efficiency

Efficiency

E  p=
S(p)
p

=
To(1)
T(p)*p

In perfect case S(p)=p i E(p)=1

Granularity and Efficiency Example
static int Consument()
 {
 int primesCount = 0;
 int min = 0;
 int max = 0;
 int m = 0;

 while (true) //endless
 {
 go.WaitOne(); // wait for data
 min = lowLimit; //remember global var to local
 max = hiLimit;
 ready.Set(); // ok we read data now, server can change lowLimit and hiLimit
 if (min == max) // this is the end
 {
 Console.WriteLine("finish");
 go.Set(); // let another consument in
 return primesCount;
 }

 for (int n = min; n < max; n++)
 {
 bool isPrime = true;
 m = n / 2;
 for (int i = 2; i <= m; i++)
 {
 if (n % i == 0)
 {
 isPrime = false;
 break;
 }
 }
 if (isPrime == true)
 primesCount++;
 }
 // Console.WriteLine($"Found {primesCount} primes between {min} and {max}");
 }
 }

Granularity and Efficiency Example
 static int lowLimit = 0;
 static int hiLimit = 0;
 static EventWaitHandle ready = new AutoResetEvent(true);
 static EventWaitHandle go = new AutoResetEvent(false);
 static void Server(int packetSize, int packetCount)
 {

 for (int i = 0; i < packetCount; i++)
 {
 ready.WaitOne(); // wait for consument ready to
read next data
 lowLimit = hiLimit;
 hiLimit += packetSize;
 go.Set(); // tell consument that data are ready
 }
 ready.WaitOne(); // ensure last values was read
 lowLimit = hiLimit; //it's a sign to end
 go.Set();
 Console.WriteLine("Server finished");
 }

Granularity and Efficiency Example

1 10 100 1000 10000 100000 500000 1000000
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Package size

Time in ms

Granularity and EfficiencyE

G

1

Optimum - matching
Granularity to the
equipment

Big participation
communication

Ineffective division
only one processor

G too small G too big

Amdahl's Law

● P is a part that does not benefit from the
improvement of the resources of the system,
runs in sequential way. For example critical
section

● (1-P) is a part that benefits from the
improvement of the resources of the system

● N – processor's count

Maximal speedup: S=
1

(1−P)+
P
N

Amdahl's Law

Source Wikipedia

Amdahl's Law

● When we know speedup S for N processors
● Theoretical P we can estimate:

Pest=

1
S
−1

1
N

−1

Organization of calculations

M

S S S

System with master-slave process

Organization of calculations

Pipelining

0 321

● Each processor must wait for it to receive the data
● cannot start simultaneously
● the entire system runs at its slowest pace
● little flexibility
● N - packet count
● p - processors

E=
N*p*T
p*(N+p-1)*T

=
N

N+p-1

Why is it worth paralleling
Simple Replace Sort

 public static void Sort(SortData sData)
 {

 int temp;
 for (int i = sData.Left; i < sData.Right - 1; i++)
 {
 for (int j = i; j < sData.Right; j++)
 {
 if (sData.ArrayOfInts[j] < sData.ArrayOfInts[i])
 {
 temp = sData.ArrayOfInts[j];
 sData.ArrayOfInts[j] = sData.ArrayOfInts[i];
 sData.ArrayOfInts[i] = temp;
 }
 }
 }
 }

Simple Replace Sort

Complexity:

It is about:

n−1n−2...1=
n(n-1)

2
n2

2

Merge sort

4,2,7,6,1 8,5,0,3,9

1,2,4,6,7 0,3,5,8,9

0 1 98765432

4,2,7,6,1,8,5,0,3,9

 Merge sort alghoritm
public static int[] Merge(SortData sData)
 {
 int[] arrayOut = new int[sData.Size];
 int counterOut = 0;
 int ind1, ind2;
 int count1 = sData.Left;
 int count2 = sData.Middle;
 while (count1 < sData.Middle)
 {
 if (sData.ArrayOfInts[count1] < sData.ArrayOfInts[count2])
 {
 arrayOut[counterOut++] = sData.ArrayOfInts[count1++];
 if (count1 >= sData.Middle)
 //left part is finished so rewrite rest of
 for (ind2 = count2; ind2 < sData.Right; ind2++)
 {
 arrayOut[counterOut++] = sData.ArrayOfInts[ind2];
 }
 }
 else
 {
 arrayOut[counterOut++] = sData.ArrayOfInts[count2++];
 if (count2 >= sData.Right) //rest of numbers can be rewrite direct
 {
 for (ind1 = count1; ind1 < sData.Middle; ind1++)
 {
 arrayOut[counterOut++] = sData.ArrayOfInts[ind1];
 }
 count1 = sData.Middle; //finish
 }
 }
 }
 sData.ArrayOfInts = arrayOut;
 return arrayOut;
 }

Merge sort

 SortData sdR = new SortData(array, size, size / 2, 0, size); //sort
parameter for left side of the array
 SortData sdL = new SortData(array, size, 0, 0, size / 2); //sort parameter
for right side of the array
 SortData sdM = new SortData(array, size, 0, size / 2, size); //sort
parameter for merge (whole array with middle point).
SimpleSort.Sort(sdL);
SimpleSort.Sort(sdR);
SimpleSort.Merge(sdM);

Merge sort

Estimated cost:

To sort elements we do only

comparisons

For two subarrays it is comparisons + n for merge.

What is more, subarrays can be sort parallelly

n
2

 n
2

2

2
=
n2

8

n2

4

example SimpleSort

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52

